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ABSTRACT

We propose a sub-structural niching method that fully
exploits the problem decomposition capability of linkage-
learning methods such as the estimation distribution al-
gorithms and concentrate on maintaining diversity at the
sub-structural level. The proposed method consists of
three key components: (1) Problem decomposition and
sub-structure identification, (2) sub-structure fitness esti-
mation, and (3) sub-structural niche preservation. The sub-
structural niching method is compared to restricted tourna-
ment selection (RT'S)—a niching method used in hierarchi-
cal Bayesian optimization algorithm—with special empha-
sis on sustained preservation of multiple global solutions of a
class of boundedly-difficult, additively-separable multimodal
problems. The results show that sub-structural niching suc-
cessfully maintains multiple global optima over large number
of generations and does so with significantly less population
than RTS. Additionally, the market share of each of the
niche is much closer to the expected level in sub-structural
niching when compared to RTS.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization; 1.2.8
[Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search; 1.5.3 [Pattern Recognition]: Clustering
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1. INTRODUCTION

One of the daunting challenges in the field of genetic and
evolutionary computation is the systematic and principled
design of scalable genetic algorithms (GAs) and significant
progress has been made along these lines. A design de-
composition theory has been proposed and several compe-
tent GAs—GAs that solve hard problems quickly, reliably,
and accurately—have been developed [8]. One such class
of competent GAs is the estimation distribution algorithms
(EDASs) [29, 21]. EDAs replace the traditional variation op-
erators of GAs with probabilistic model building of promis-
ing solutions that identifies key sub-structures (or building
blocks) of the underlying search problem, and sampling the
model to generate new candidate solutions. EDAs have suc-
cessfully solved problems of bounded difficulty at a single
level or at multiple hierarchical levels requiring only poly-
nomial (oftentimes sub-quadratic) number of function eval-
uations [28, 27, 31].

One of the important components required by EDAs for
successfully solving multimodal, hierarchical, dynamic, and
multiobjective optimization problems is an efficient niching
method. The niching mechanism has to stably maintain a
diverse population throughout the search, thereby allowing
EDAs to (1) identify multiple optima reliably when solv-
ing multimodal and multiobjective problems, (2) identify
the global optimum by deciding successfully between sub-
structures when all the hierarchical interactions are revealed,
and (3) rapidly identify global solutions as and when changes
occur in non-stationary problems. Such a niching method
not only needs to adaptively identify and conform to all
the niches and niche-distance distributions, but also need to
maintain them effectively over the duration of the search.



Traditional niching methods usually maintain diversity
at the level of individuals and are not often adaptive to
the niche size and distribution. Additionally, they also do
not exploit the underlying working mechanism of EDAs and
other linkage-learning algorithms. That is, the traditional
nichers often use distance information based on the entire
individual and do not often directly respect or exploit prob-
lem decomposition. Therefore, in this paper we propose a
niching method that respects problem decomposition, and
utilizes the sub-structure identification capability of EDAs,
and maintains diversity at sub-structure level in a stable
manner. Such a niching method is not only advantageous
for maintaining multiple niches, but also effective for hierar-
chical [27], and dynamic [3, 1] problem optimizations where
sub-structure niche preservation is what actually required.

The proposed method consists of three components: (1)
Sub-structure identification, where we use the probabilis-
tic model built by EDASs, specifically, extended compact
GA [16], (2) sub-structure fitness estimation, where we use
the fitness-estimation procedure proposed by Sastry et al
[34], and (3) sub-structure niche preservation, where differ-
ent mechanisms can be envisioned, and suitability of each
is based on the purpose and objective of niching. The key
idea of the sub-structure niche preservation mechanism is to
preserve highly-fit sub-structures in desired proportions in
the population in a stable manner over the duration of the
search.

The sub-structural niching mechanism is compared with
restricted tournament selection [17]—a nicher used in hi-
erarchical Bayesian optimization algorithm (hBOA)—on a
class of boundedly-difficult additively-separable multimodal
problems. Specifically, we compare (1) the stability of main-
taining multiple niches over a large number of generations,
(2) the capability of allocating market share to different
niches at the desired level, and (3) the population size re-
quired to consistently maintain all the global optima.

The paper is organized as follows. The next section pro-
vides a brief introduction to the extended compact genetic
algorithm, followed by a detailed description of the proposed
sub-structural niching mechanism. The performance of the
proposed method is compared to that of RTS in section 4,
followed by key conclusions of the paper.

2. EXTENDED COMPACT GENETIC

ALGORITHM

Extended compact genetic algorithm (eCGA) [16] is an
EDA that replaces traditional variation operators of ge-
netic and evolutionary algorithms by building a probabilistic
model of promising solutions and sampling the model to gen-
erate new candidate solutions. The typical steps of eCGA
can be outlined as follows:

1. Initialization: The population is usually initialized
with random individuals. However, other initializa-
tion procedures can also be used in a straightforward
manner.

2. Evaluation: The fitness or the quality-measure of the
individuals are computed.

3. Selection: Like traditional genetic algorithms, EDAs
are selectionist schemes, because only a subset of bet-
ter individuals is permitted to influence the subse-
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. Probabilistic model estimation:

quent generation of candidate solutions. Different se-
lection schemes used elsewhere in genetic and evo-
lutionary algorithms—tournament selection, trunca-
tion selection, proportionate selection, etc.—may be
adopted for this purpose, but a key idea is that a
“survival-of-the-fittest” mechanism is used to bias the
generation of new individuals.

Unlike traditional
GAs, however, EDAs assume a particular probabilis-
tic model of the data, or a class of allowable models.
A class-selection metric and a class-search mechanism
is used to search for an optimum probabilistic model
that represents the selected individuals.

Model representation: The probability distribution
used in eCGA is a class of probability models known
as marginal product models (MPMs). MPMs partition
genes into mutually independent groups and specifies
marginal probabilities for each linkage group. For ex-
ample, the following MPM, [1,3] [2] [4], for a four-
bit problem represents that the 1°* and 3'¢ genes are
linked and 2" and 4'" genes are independent. An
MPM must also specify probabilities for each sub-
structure. For the above example, the MPM consists of
the marginal probabilities: {p(z1 = 0,23 =0), p(z1 =
0,z3 = 1), p(z1 = L,z = 0), p(z1 = Lzz = 1),
p(z2 =0), p(z2 = 1), p(za = 0), p(za = 1)}, where z;

is the value of the i*® gene.

Class-Selection metric: To distinguish between
better model instances from worse ones, eCGA uses a
minimum description length (MDL) metric [32]. The
key concept behind MDL models is that all things be-
ing equal, simpler models are better than more com-
plex ones. The MDL metric used in eCGA is a sum of
two components:

e Model complexity which quantifies the model
representation size in terms of number of bits re-
quired to store all the marginal probabilities:

Cy = log, (n) i (2k - 1) . (1)

i=1

where n is the population size, m is the number

of linkage groups, k; is the size of the i*" group.
e Compressed population complexity, which
quantifies the data compression in terms of the
entropy of the marginal distribution over all par-
titions.

m 2k

Co=n)_ Y —pijlog, (pi;), (2)

i=1 j=1

where p;; is the frequency of the j** gene sequence
of the genes belonging to the i*® partition.

Class-Search method: In eCGA, both the structure
and the parameters of the model are searched and op-
timized to best fit the data. While the probabilities are
learnt based on the variable instantiations in the pop-
ulation of selected individuals, a greedy-search heuris-
tic is used to find an optimal or near-optimal proba-
bilistic model. The search method starts by treating



each decision variable as independent. The probabilis-
tic model in this case is a vector of probabilities, rep-
resenting the proportion of individuals among the se-
lected individuals having a value '1’ (or alternatively
’0’) for each variable. The model-search method con-
tinues by merging two partitions that yields greatest
improvement in the model-metric score. The subset
merges are continued until no more improvement in
the metric value is possible.

5. Offspring creation: In eCGA, new individuals are cre-
ated by sampling the probabilistic model. The off-
spring population are generated by randomly gener-
ating subsets from the current individuals according
to the probabilities of the subsets as calculated in the
probabilistic model.

6. Replacement: =~ Many replacement schemes gener-
ally used in genetic and evolutionary computation—
generational replacement, elitist replacement, niching,
etc.—can be used in EDAs, but the key idea is to re-
place some or all the parents with some or all the off-
spring.

7. Repeat steps 2—6 until one or more termination criteria
are met.

3. SUB-STRUCTURAL NICHING

Traditional niching methods [4, 5, 14, 22, 35, 17, 24, 19,
25] achieve speciation by maintaining diversity at the level
of individuals. Effectiveness of such methods are strongly
dependent on the niche distribution. While some methods
exist that can automatically adjust the niche radius [15],
they still detect diversity on the individual level.

One of the key elements of Goldberg’s design decom-
position [10, 9]—which has been influential in the design
and development of many competent GAs—suggests that
one of the critical steps for GA success is problem decom-
position, and identification and mixing of building blocks.
Since the EDAs work by first decomposing the search prob-
lems into sub-structures and then creating new solutions by
exchanging different sub-structures, it might be advanta-
geous, sometimes even necessary, to maintain diversity at
the building-block (sub-structural) level and not at indi-
vidual level [33]. This is especially the case for dynamic
optimization, hierarchical-problem optimization, and multi-
objective optimization.

Sub-structural niching requires three key elements:
Sub-structure identification: To maintain diversity at
the sub-structural level, we first need a mechanism to auto-
matically identify all the important building blocks of the
underlying search problem. In this study, we use the prob-
abilistic models built by the eCGA. However, other linkage
identification techniques [13, 12, 20, 26, 36, 18, 29, 21| can
be used in a straightforward manner.

Sub-structure fitness estimation: Once key sub-
structures are identified, we must decide on which sub-
structures to preserve and in what proportion. While some-
times, we might require to retain all sub-structure alterna-
tives, usually we only need to preserve the highly fit ones.
In order to do so, we need a way to estimate the quality of
substructures from the fitnesses of individuals that possess
them.
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In this study, we use the fitness-estimation method pro-
posed by Sastry, Pelikan and Goldberg [34]. That is, after
the probabilistic model is built and the linkage map is ob-
tained, we estimate the fitness of sub-structures. In all, we
estimate the fitness of a total of Y., 2" schemas, where
k; is the order of i*" schema. For example, for a four-bit
problem, whose model is [1,3][2] [4], the schemas whose
fitnesses are estimated are: {0%0%, O%1%, 1%0%, 1*1%, *0%*,
* 1k, *4%0, +¥%1},

The fitness of a sub-structure, h, is defined as the differ-
ence between the average fitness of individuals that contain
the schema and the average fitness of all the individuals.
That is,

n/
fm == S -, G)
Tt vaoh} i

where np, is the total number of individuals that contain the
schema h, z; is the i*® individual and f(z;) is its fitness, n’
is the total number of individuals that were evaluated. If a
particular schema is not present in the population, its fitness
is arbitrarily set to zero. Furthermore, it should be noted
that the above definition of schema fitness is not unique and
other estimates can be used. The key point however is the
use of the probabilistic model in determining the schema
fitnesses. Further details regarding the estimation method
are given elsewhere [34, 30].

Sub-structure niche preservation: Having identified the
sub-structures and estimated their quality is not enough, we
still need to decide on a methodology for preserving the sub-
structures. Different methods such as fitness-proportionate,
ranking, and truncation can be used and no one method is
better than the other. For example, we can opt to preserve
the sub-structures in proportion to their estimated fitness
(so called fitness-proportionate method). That is, we have
to modify the sampling frequencies of each sub-structure,
h]'Z

s (hj) 7
S fa(ha)
where k is the order of sub-structure h; and h; are the sub-
structures that compete with and belong to the same par-
tition as h;. We then use the above frequencies to sample
the substructures to create new offspring.

Regardless of how the sub-structure preservation is done,
the key idea is to preserve those sub-structures that are po-
tentially highly fit and are a part of different global optima.
The different sub-structure preservation methods usually
requires modification of the sampling frequencies of sub-
structures used in EDAs to generate new candidate solu-
tions.

Before we use the proposed method for sustained mainte-
nance of multiple global optima, we need to verify whether
the sub-structure fitness estimate is accurate and if the
method is capable of preserving different substructures over
time. For the verification, we use fitness-proportionate
method; that is, we maintain different substructures in
proportion to their estimated fitness. We first investigate
the accuracy of relative fitness estimates of different sub-
structures in a given partition. The results for two different
additively decomposable problems, m-k deceptive trap [2,
7, 6] and m-k bipolar function [11] are shown in figure 1.
To demonstrate that the niching method can maintain all

ps (hy) = (4)
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Figure 1: Comparison of the ideal and experimental sub-structure frequencies for different additively sepa-

rable problems.

substructures in a sustained manner over time, we plot the
market share of each of the 16 schemata for the 10-4 decep-
tive trap functions in figure 2. The results show that the
substructure-fitness estimation is quite accurate and that it
can preserve the substructures at their desired proportions
over time.
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Figure 2: Illustration of sub-structure preservation
via fitness-proportionate method for a 10-4 decep-
tive trap function

4. RESULTSAND DISCUSSION

In this section, we investigate the effectiveness of the sub-
structural niching in stably maintaining all the global op-
tima over a large number of generations, and the popula-
tion size required to do so, as a function of the number of
optima. We note that in all the results presented in this pa-
per, we consider fitness-proportionate sub-structural niche
preservation mechanism for proof-in-principle and, as men-
tioned earlier, other possible mechanisms can be more bene-
ficial depending on the goal for using the niching mechanism.
Additionally, the window size for RTS was set to the prob-
lem size, as suggested elsewhere [27]. Before presenting the
results we first give a brief description of the test problem
considered in the experiments.

Our approach in verifying the performance of sub-
structural niching is to consider bounding adversarial prob-

674

lems that exploit one or more dimensions of problem diffi-
culty [9]. Particularly, we are interested in problems where
building-block identification is critical for the GA success.
Additionally, the problem solver (eCGA) should not have
any knowledge of the building-block structure of the test
problem, but should be known to researchers for verifica-
tion purposes.

One such class of problems is the m-k deceptive trap prob-
lem, which consists of additively separable deceptive func-
tions [2, 7, 6]. Deceptive functions are designed to thwart the
very mechanism of selectorecombinative search by punish-
ing any localized hillclimbing and requiring mixing of whole
building blocks at or above the order of deception. Using
such adversarially designed functions is a stiff test—in some
sense the stiffest test—of algorithm performance. The idea
is that if an algorithm can beat an adversarially designed
test function, it can solve other problems that are equally
hard or easier than the adversarial function.

In this study, we use a modified m-4 deceptive trap prob-
lems where both 0000 and 1111 have equal fitness. Therefore
there are 2™ global optima with an identical fitnesses. That
is, each k-bit trap is defined as follows:

1 fu=k
trapr(u) = 1 fu=0 ’ (5)
0.75 [1 - kﬁl] otherwise

where wu is the number of 1s in the input string of k£ bits.
First, we compare the ability of RTS and sub-structural
niching in maintaining all the global optima over time in
a stable manner (see figure 3). We start by comparing
the single GA run behavior of both niching methods in fig-
ures 3(a) and 3(b), where we show the proportion of indi-
viduals in each of the 32 global optima of a 5-4 trap func-
tion as a function of time. The results clearly show that
in contrast to RTS the niche maintenance of sub-structural
niching is highly stable and the allocated market share for
each optima is in agreement with the desired proportion of
1/32 = 0.03125'. We then consider the average behavior of
both RTS and sub-structural niching, where we plot the av-
erage market share of each of the global optima over time in
figures 3(c) and 3(d). The lines above the bars in figures 3(c)
and 3(d) depict the standard deviation and optimal solution

1Since all the global optima have identical fitness, we expect
that the market share of each optima is 1/32 = 0.03125.
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behavior, and (e) & (f) Average, average minimum and average maximum proportion allocated to an optima.
The maintenance of all the optima by RTS is very noisy and unstable, while, sub-structural niching maintains
all the niches stably over large number of generations. Additionally, the market share of each optima in sub-
structural niching is close to the expected proportion of 0.03125. Results in (c)-(f) are averaged over 50

independent GA runs.
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ID refers to an arbitrary (but unique) number for each of the
32 global optima. For simplicity, we also plot the average,
average minimum, and average maximum market share of
an optima in figures 3(e) and 3(f). Figures 3(c)-3(f) clearly
show that RTS cannot stably maintain the global optima,
even at a larger population size, when compared to sub-
structural niching.

Figure 3 clearly indicates overall the effectiveness of sub-
structural niching in stably maintaining all the global op-
tima at the desired proportion over large number of gen-
erations. We note that the time to detect the global op-
tima is faster in RTS than in sub-structural niching. This
is to be expected as sub-structural niching maintains diver-
sity in all sub-structures proportional to their fitness, and it
takes longer for mixing to hone in on to the global optima.
However, once the optima are found, sub-structural niching
preserves much more stably than RTS.

We also studied the effect of population size, n, on the
success probability of maintaining at least one copy of all
the global optima, -, the results of which are shown for
5-4 deceptive trap function in figure 4. The figure plots
the probability of maintaining all the global optima for dif-
ferent number of generations as a function of population
size for both RTS and sub-structural niching. As shown in
the figure, RTS, requires larger population sizes to maintain
the global optima for longer time. This is well understood
phenomena of traditional nichers and has been analyzed by
Mahfoud for fitness sharing [23]. However, in sub-structural
niching, the population size required to achieve a certain
success probability, 7, is independent of the number of gen-
erations we would like to maintain the niches. Addition-
ally, RTS requires significantly larger population size than
sub-structural niching to achieve the same level of success
probability.

Finally, we use the n versus =y results to determine the pop-
ulation size required to maintain successfully all the global
optima with high probability. Specifically, we plot the mini-
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mum population size required by sub-structural niching and
RTS for maintaining at least one copy of nope — 1 or more
global optima in the population for different number of gen-
erations as a function of number of optima, nop:, is fig-
ure 5. The lines plotted for the RTS results are from the
population-sizing model of Mahfoud [23]:

log [(1 — ’yl/t) /nopt}
log [(nopt — 1) /Topt] ’

where t is the number of generations we need to maintain all
the niches. Figure 5 clearly shows that sub-structural nich-
ing requires significantly less population size than RTS to
maintain all the global solutions with a high probability. We
note that the population size for sub-structural niching even-
tually will grow linearly (in accordance with the population-
sizing model) with n,p: as we need at least one individual
for each of the optima. However, this might not be the case
for hierarchical and dynamic optimization problems, where
diversity is required only at the sub-structural level and not
at the solution level. Nevertheless, sub-structural niching
requires orders of magnitude smaller populations than RTS
and stably maintains niches with a high probability even for
a problem with about a thousand global optima.

(6)

5. SUMMARY AND CONCLUSIONS

In this paper we proposed a sub-structural niching mecha-
nism, which, in contrast to traditional niching mechanisms,
exploits the problem decomposition capability of estimation
distribution algorithms and stably maintains diversity at the
sub-structure, or building-block level rather than at individ-
ual level. The sub-structural niching mechanism consists of
three components: (1) Sub-structure identification, where
we use the probabilistic model built by EDAs, specifically,
extended compact GA [16], (2) sub-structure fitness estima-
tion, where we use the fitness-estimation procedure proposed



10°t
c
o
N
)
c
ke
s
=}
o
o
o
-©- BB-wise
¢ RTS:t=10
> RTS:t=25
RTS:t=50
x RTS:t=100
R ‘ ‘ ‘ ‘ ‘
16 32 64 128 256 512 1024

No. of optima, nOIDt

Figure 5: Minimum population sizing required for
maintaining at least one copy of ng,: — 1 optima
(7 = (nopt — 1) /nopt = (2™ —1)/2™) over different num-
ber of generations as a function of number of optima
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by Sastry et al [34], and (3) sub-structure niche preservation,
where different mechanisms are can be envisioned, each suit-
able based on the purpose and objective of using the niching
method. Regardless of how it is done, the key idea of the
sub-structure niche preservation mechanism is to preserve
highly-fit sub-structures in desired proportions in the pop-
ulation in a stable manner over the duration of the search.

We also tested performance of the sub-structural niching
mechanism on a class of boundedly-difficult additively sep-
arable multimodal problems and compared it with those of
restricted tournament selection (RTS)—a niching method
used in hierarchical Bayesian optimization algorithm. The
results show that not only is the sub-structural niching
mechanism able to stably preserve multiple global optima
over large number of generations, but does so with a high
probability requiring significantly less population size than
RTS. The results indicate that sub-structural niching can be
particularly effective with hierarchical and dynamic problem
optimization.
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